
Name ______ Date ______ Period _____

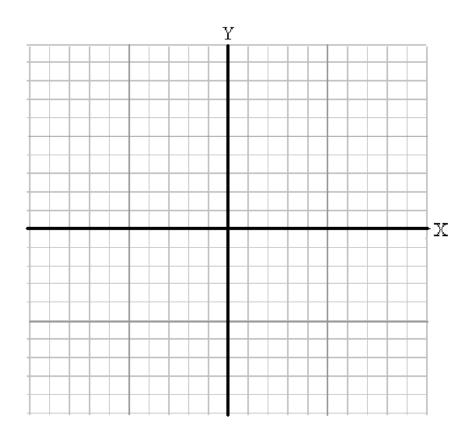
<u>DIRECTIONS</u>: For #1-2, identify the equation (#2 only), center, direction of the transverse axis, verticies, foci, and slopes of asymptotes for the following hyperbolas. Use the provided grids to graph the hyperbolas (use a straightedge for the asymptotes).

$$1. \ \frac{y^2}{36} - \frac{x^2}{25} = 1$$

Center	Transverse axis
Verticies	
Foci	

Slope of asymptotes _____

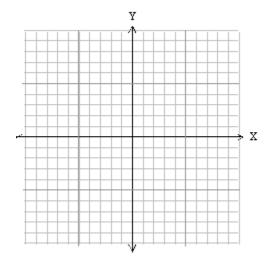
$2. \ \ 25y^2 - 4x^2 + 100 = 0$

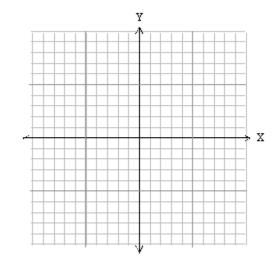

Equation ______

Center _____ Transverse axis ______

Verticies _____

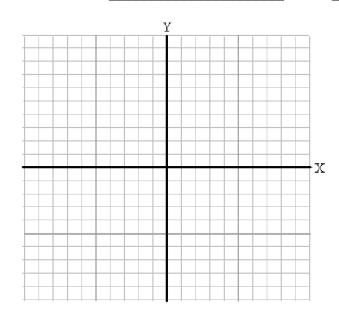
Foci _____


Slope of asymptotes ______



<u>DIRECTIONS</u>: For #3-4, write equations for the described hyperbolas in the provided blanks. Graph grids are provided for your convenience- you are not required to use them.

3. Foci: (-3, 0), (3, 0) Difference of focal radii: 4 **4.** Foci: (2, 4), (-4, 4)
Difference of focal radii: 2



DIRECTIONS: For #5, determine the center and foci of the hyperbola described by the equation. A graph grid is provided for your convenience- you are not required to use it.

5.
$$\frac{(x+2)^2}{25} - \frac{(y-3)^2}{11} = 1$$

Center_____ Foci _____

DIRECTIONS: For #6-9, identify the conic sections (circle, ellipse, hyperbola, parabola) from their equations.

6.
$$9x^2 - 4y^2 + 36x - 24y - 36 = 0$$
 8. $y^2 - 2y - 4x + 9 = 0$

8.
$$y^2 - 2y - 4x + 9 = 0$$

7.
$$9x^2 + 4y^2 + 36x - 24y - 36 = 0$$
 9. $2x^2 + 2y^2 + 8x + 12y + 8 = 0$